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Interactions

Spacecraft Interactions

« SPACECRAFT CHARGING

e PLASMA INTERACTIONS

« RADIATION INTERACTIONS

- Particles
-  UV/EUV
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Interactions

Spacecraft Surface
Charging



Interactions

Things That Can Go Bump in the Night ...

DSCS SPACECRAFT ARCING:

EMC: "SOLAR ARRAY CABLE SHOULD BE GROUNDED TO S/C"
DESIGNER: "BOLT COAXIAL CABLE SHIELD TO S/C GROUND"

MECH ENG: "DRILL HOLE INTO S/C CHASSIS, BOLT DOWN WIRE--
USE LOCTITE SO IT DOESN'T COME LOOSFE”

MORAL: DON'T ASSUME EVERYONE UNDERSTANDS YOUR
REOQUIREMENTS--ALWAYS, ALWAYS VERIFY!!
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MARECS-A MISSION

GEOSYNCHRONOUS ORBIT 36,800 Km
281 IN-FLIGHT ANOMALIES REPORTED

85% DUE TO ESD >
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NUMBER OF ELECTROSTATIC DISCHARGE EVENTS VERSUS TIME (GMT)
FOR 1982, 1983 AND 1984, WILKINS (1985)
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ATS-6 Spectrogram of Geosynchronous Charging
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Spacecraft Charging Observations: Plasma
Temperature vs Potential
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Theory of Spacecraft Charging: A Simple

Picture ...

JE—Jdj—Jdpy = 0

sum.mm' Q
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Theory of Spacecraft Charging: Current

Balance ...

+

CURRENT

“ta

= IgV)
—— (V) = V) + V)

ION REPULSION

ELECTRON REPULSION

VOLTAGE +

For Planning and Discussion Purposes Only

3-9



Interactions

SPACECRAFT CHARGING THEORY

THE BASIC EQUATIONS:

CURRENT BALANCE:
L(V)=L(V)-[L(V)+ L, (V) + Ig(V) + Lge, (V) + I, (V)]

POISSON'S EQUATION:
V?V=4rq(n, +n,—n,)

TIME-INDEPENDENT BOLTZMANN (VLASOV) EQUATION:
v-VF -LL.9y(r)-V,F =0
.

[
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DEBYE LENGTH

V=+y V=0
=) Debye Lengthis a
® © characteristic distance
% © EE} © =] oCer w;['nichtthede;sma
'EJ? o “_shields” the electric
E@ E} E} field
% o © ©
% © [
+ Ejg © ©
—— A B
s )\’D T
SOLUTION TO POISSON'S EQUATION FOR SPHERICAL SYMMETRY:
V(r) B E—"Mﬂ Jl B @ A N
1 WHERE: ">~ | 47,7, THE DEBYE LENGTH
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SPACECRAFT CHARGING

ORBIT LIMITED, MONO-ENERGETIC PARTICLE
CURRENT COLLECTION

ASSUME: .
) mv:  mv (R
)t@ - ENERGY CONSERVATION: 2" = 2( }+‘EV(251

@' ]R - ANGULAR MOMENTUM: mRv, = mRv(R,)
I
)

172
. 2gVI(R
SOLVE FOR IMPACT PARAMETER: R, = R{I ———Ez—l}

o

I 2qV(R,)
™ F = = 1-—
CURBENT DENSITY AT SPACECRAFT IS: J(V) 43,&3 *fa( - )
i

WHERE: Ja=;W—R?
THIS IS THE "THICK SHEATH, ORBIT-LIMITED" CURRENT SOLUTION
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Theory of Spacecraft Charging: A Simple Picture ...

JE = Jdj=Jdpy = 0
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SPACECRAFT CHARGING
MAXWELL-BOLTZMANN DISTRIBUTIONS

ASSUME: B
- LIQUVILLE'S THEOREM: F (v) =F "(v")
2 2
mv. mv (R') ,
. ENERGY CONSERVATION: 2 = > +qV(R')
g I gV KT{ Y,
THESE IMPLY: F, (“'—)”‘ "I, r(“")
SIGN IS: + FOR ELECTRONS, - FOR IONS
— qv
ND: (v’) :‘?*max(ﬂ + = -
INTEGRATING THE PHASE SPACE DENSITY TO GET CURRENT GIVES:
6¢Wﬂ; e'&“’fﬂf 1’2
=7 . % =7 . V _gqn | 2KT,
fe=la e s 1= 1—% where: Jie ”—2{?,;)

UPPER VALUE: REPELLED SPECIES
LOWER VALUE: ATTRACTED SPECIES
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Theory of Spacecraft Charging: A Simple Example

FOR A NEGATIVELY CHARGED SPACECRAFT:
_ AN VIKT,
JT(V) - Jm[ KT j Jﬁa(gq )

I

TYPICALLY AT GEOSYNCHRONOQUS ORBIT:
gV
~ ()
KT,

FOR CURRENT BALANCE:
J.(V)=0

THIS IMPLIES:

V = _KT“’ In(i]
q

Io
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FIRST ORDER MODELS OF
GEOSYNCHRONOUS CHARGING

ATS-6/AT8-6 ESTIMATED VERSUS ATS-6/ATS-6 ESTIMATED ECLIPSE
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QBSERVED POTENTIAL (k¥) Kp
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3-D SPACECRAFT CHARGING

OBJECTIVES
 TO IDENTIFY BASIC CONCEPTS
- CURRENT BALANCE
- SPACE CHARGE LIMITED
- ORBIT LIMITED CURRENT COLLECTION
» TO IDENTIFY CAUSES OF 3-D CHARGING
*» TO DEMONSTRATE 3-D CHARGING CALCULATIONS

SQURQE§
FLUX ASYMMETRIES
MAGNETIC FIELD
- ELECTRIC FIELD
- _ RAM/WAKE
« GEOMETRIC
-  SHADOWING
-  MATERIAL PROPERTIES
- PHOTOELECTRONS

®* SPACE CHARGE
- POTENTIAL BARRIERS
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Differential Charging on ATS-5
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3-D MODELING OF SPACE CHARGE EFFECTS

EQUIPOTENTIAL CURVES FOR SPACE CHARGE LIMITED
MONOPOLE-DIPOLE FIELD PARTICLE TRAJECTORIES

3-19
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FINITE ELEMENT MODEL
OF PIONEER-VENUS SPACECRAFT
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THE "NASCAP” SPACECRAFT CHARGING CODE
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Plasma Interactions
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Normalized Electron Current Density vs Ram Angle

and Altitude

h = 550640
e = 009

aon[®

Ké Mo
3
H

h = 1178 -1288
N+ = 004

h = altitude in Km
M = Y0 F 3-23
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MULTIBODY CHARGING AT LOW ALTITUDES*

A. AMBIENT CHARGING
B. MULTIBODY CHARGING
C. AURORAL CHARGING
D. BIASED + AURORAL

: ~GAREETT, AND MURPHY (1994)

3-24
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The Aurora Are Everywhere ...

".I

Ly -

B The Auro
The'Shuttrer™..™ . = [ Zones...

-g

alzo S

3-25



Interactions

AURORAL CHARGING OVERVIEW
WHAT IS THE CONCERN?

« Auroral charging is a major concern for polar
orbiting spacecraft at Earth

« Jupiter has pronounced auroral features:

— A narrow auroral zone at high latitudes
— A complex and variable environment over the poles

— Aurora-like features associated with the main jovian
moons and their magnetic flux tubes

* |F we understand the environment, THEN proper
mitigation techniques should allow us to limit
their effects... 326
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DMSP Low Altitude Spacecraft Charging

12 January 1983

~=-E >5keV
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> AURORAL AR

DMSP low altitude charging in Earth’s auroral zone. Left side plots electron fluxes and spacecraft
potentials along nadir track of spacecraft at 800 km (red-yellow line on right). Left hand data
correspond to passage throuh auroral arc along yellow segment right side). (Courtesy AFRL)
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Jovian Auroral Zone Spectra

Ajello Maxwellian Fig. 4A Ajello Kappa Fits Fig. 4b
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S
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Ajello et al., “Spectroscopic Evidence for High-Altitude Aurora at Jupiter from
Galileo Extreme Ultraviolet Spectrometer and Hopkins Ultraviolet Telescope
Observations”, Icarus, 152, pp. 151-171, 2001. 3-28
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Diff Flux{cm -s-ev}™*

Differential Flux vs Energy

1.E+03

1.E+02 -

Kappa

1.E+01 1 [Epp Fit:
Jo=4e4 (cm” s sr keV) !
Eo=60 keV
n=3.2

1.E+00 - EF=2 ergsfcm® s

Kappa Fit:

Rk=.005 cm™
Tk=10 keV

1.E-01 - K=3
EF=1.05 ergs/cm’ s

1.E-02 T

1.E+04 1.E+05

Energy (eV)

1.E+06

Jovian Diffuse Aurora

Observed EPD electron spectrum at
18.4 Rj*. As Energy Flux varies from
~1 to ~100 ergs/cm?-s, we assumed
a “Worst Case” of ~100 ergs/cm?-s.

*Bhattacharya et al., “On the energy source for the diffuse Jovian auroral
emissivity”, Geophys. Res. Lttrs., 28, 2715-2754, 2001.
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INTERNAL
ELECTROSTATIC
CHARGING
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Internal Electrostatic DICHARGE PATTERN
Discharge—Satellite Killer ...

CHARGED PARTICLE INTERACTIONS
PROTON/ELECTRON ENERGY vs PENETRATION DEPTH FOR AL
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Internal Electrostatic
Discharge—The Movie

Stoneridge Engineering 3-32
2523 Stonewall Ave.

) For Planning and Discussion Purposes Only-
Woodridge, IL 60517-1103 'ng Iscussion Purp y



Spacecraft Environmental Interactions

VXxB
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THE ELECTRIC FIELD INDUCED BY A
MAGNETIC FIELD

E = 0.1(vxB)Vim
v — 7.6 Km/s

B — 0.3G

E — 03V/im

SHUTTLE — i

15m x 24m x 33m
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Radiation
Interactions

For Planning and Discussion Purposes Only



I ' .l -
Displacement Interactions

Primary Sources of Damage

*Energy Loss Effects -Flux/Rate Effects
-Displacement Damage  -Material Changes
-Total lonizing Dose -Internal Charging

-Single Event Effects -UV/EUV
-SEU
-Latchup
-Gate Rupture

For Planning and Discussion Purposes Only

< Radiation
- Effects on
Z 7 Spacecraft
Systems

lonization Losses
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Recipe for Dosage

STEPS:
0) Assume target of density p, area A, and thickness |§f’—*m

1) Determinefluence (number N of particles per unit area 8A normal to target surface)
versus energy. Call this f(E) at energy E:
N(E)

fCEY = —— 34

2) Estimate energy change 3E in crossing thickness 6T of target for particle emergy E:

5E = 525
dx

[5

3) Dose per particle of energy E is:

D(E}#-@-wﬁﬁ E 1 dE =
M ci‘x$ M pd‘x SA
4) Total dose at energy E is :
D,(E)= N DIE) =S| /(B)

5) Integrate over the range Eg to oo for total dose. 3.37
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Photon Interactions with Matter

RANGE OF IMPORTANCE
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MILS TO G/CM? CONVERSION FOR

ALUMINUM (p = 2.7 G/CM°)
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CHARGED PARTICLE INTERACTIONS (Cont'd)

ELECTRON DOSE vs DEPTH FOR CaFMg
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Radiation Transport: Electron Monte Carlo
Simulations

3-41
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CHARGED PARTICLE INTERACTIONS
PROTON/ELECTRON ENERGY vs PENETRATION DEPTH FOR AL
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CHARGED PARTICLE INTERACTIONS (Cont'd)

PROTON DOSE vs DEPTH FOR CaF,
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RANGE [GIOMSQ)

1o
10°
107
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T Ll el i TR L S T ity A B A 2 B Ml i B
10% 10! 10° 104 102 108
EMERGY (MEV/AML)

1¢

E%ﬂﬁ%l

. lon range versus energy in all32] for 1, He, C. O, Ar, and Fe. The range is in
units of g-cm? and the energy in MeV/H.
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GEOMETRIC EFFECTS ON SHIELDING
GEOMETRIC CONFIGURATIONS

1. HOLLOW S
SPHERE 7
4. BACK  2ur
SLAB 7
oy
ot
,y .
LA
i
2. SOLID )
5. DOUBLE
SLAB
3, SINGLESLAB @ - O, D; —
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GEOMETRIC EFFECTS ON SHIELDING
RADIATION DOSE FROM TRAPPED PROTONS
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GEOMETRIC EFFECTS ON SHIELDING (Cont'd)

DOSE [rads &)

RADIATION DOSE FROM TRAPPED ELECTRONS
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TRANSFORMING DIFFERENTIAL FLUX
VS ENERGY TO INTEGRAL FLUX VS LET

dF(LET) _dF(E) dE
d(LET) ~ dE d(LET)
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LINEAR ENERGY TRANSFER (Cont'd)
LET FUNCTION

STOPPING POWERS IN SILICON
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Examples of Single Event Upset Cross Sections
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SHIELDING EFFECTS ON THE HEINRICH FLUX
GALACTIC COSMIC RAYS (Z<27)
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SHIELDING EFFECTS ON THE HEINRICH FLUX (Cont'd)
SOLAR PROTON EVENT
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WHAT IS DISPLACEMENT DAMAGE DOSE (DDD)?

Physical process of DDD: Displacement => Generates
Vacancies => Device Property Degradation

Silicon crystal

Neutron \@/@\
o
v
”@Q&%\C\

Displacement Damage
(DD) in atomic lattice
and vacancy formation
due to Silicon
displacement.*

*PennsylvaniaState University

Interstitial formation
due to Silicon
rearrangement after
scattering*

Silicon erystal

58

Silicon atom

O—

Interstitial

Distance (A)

For Planning and Discussion Purposes Only
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Cascade damage in
a silicon lattice**
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*G. P. Summers, “Displacement damage:
Mechanisms and measurements,”in IEEE NSREC

Short Course, New Orleans, LA, July 1992




Interactions

Displacement Damage

« Basic change in semiconductor lattice caused by scattering collisions

— Leads to alteration of electrical and optical properties
— Minority carrier lifetime, mobility, absorption edge,
— electro-luminescence, carrier removal

. Ovler)the years, there has been little concern with displacement damage (NASA
only

— Very minor effect in CMOS (carrier removal)
— Usually less important than ionization for discrete transistors
— Testing is expensive and only done when necessary

« Why is displacement damage now important?

— Increased use of advanced commercial linear bipolar devices
— High precision, high performance circuit applications

— Second order effects are becoming important

— More use of specialized components

— High precision voltage references

— Photonic devices

— Smaller spacecraft

— Less shielding

— Lower design margins

— Nuclear power sources in close proximity
For Planning and Discussion Purposes Only
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Displacement Damage Effectiveness
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Displacement Damage Concerns

 Displacement damage effects must be dealt with separately from total
dose and corresponding Co-60 testing

— Separate requirement for displacement damage often not given

— People are used to thinking in terms of “dose”, whether its protons,
electrons or Co-60 gamma rays that are used for testing

— Missions with significant proton (and/or neutron) fluences must address
displacement damage effects in photonic devices and sensitive linear
circuits

 Displacement damage hardness assurance is difficult because of
complicated energy dependence of proton displacement damage

 For optocouplers, temperature effects need to be included
« Must also consider neutron displacement damage in missions with
RTGs or reactors
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Interactions

Where to Find LETs and NIELS:
LETSs for electrons, protons, and alphas:

— The tabulated data are available at
http://physics.nist.gov/PhysRefData/Star/Text/contents.html

e LET's for heavier ions:

— TRIM (http://www.srim.org) can be used to compute heavy ion
LETSs.

e Tabulated NIEL data for common device
materials:

— For electrons, I. Jun et al., to be presented at NSREC this year

— For protons, I. Jun et al., IEEE TNS, pp. 1924-1928, December,
2003

— For alphas, I. Jun et al., IEEE TNS, pp. 3207-3210, December,
2004
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Interactions

Characteristics of Radiation Effects for Any
Future Mission to the Jovian System

TID

Dose rate

DDD

SEE

Charging

Transient or Secondary
radiation

Very high. Dominated by high energy electrons. Will require
additional attention.

Can be very high, especially during lo fly-bys or Europa orbits.
Will require additional attention.

Typical level. Could be important for selected devices at Jupiter

Typical level. Trapped heavy ions at Jupiter are not expected to
be a design driver.

Internal charging is a major issue due to high energy electrons if
not properly designed. Will require additional attention.

Important design consideration for sensors and detectors. Must
include secondary particles from high energy electron
interactions with materials.
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